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Abstract - As spacecraft systems evolve from simple 
embedded devices to become more sophisticated 
computing platforms with complex behaviors it is 
increasingly necessary to model and manage the flow of 
data, and to provide uniform models for managing data 
that promote adaptability, yet pay heed to the physical 
limitations of the embedded and space environments.  The 
Mission Data System (MDS) defines a software 
architecture in which both control theory and end-to-end 
data management provide the primary guiding principles. 
This paper describes how the MDS architecture facilitates 
data accountability and storage resource management. 
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1 Introduction 
  As space missions become more complex with ever 
greater demand for automation, increasingly tight 
interoperability requirements between robotic vehicles, and 
unprecedented levels of human-robot interaction, the size 
and complexity of the data systems needed to manage them 
must also evolve.   
 An embedded control system, and particularly one 
that is remotely controlled, has two primary 
responsibilities: to effectively translate the intent of remote 
operators into actions, and to return information describing 
what happened.  For scientific spacecraft, this can be 
summed up in a single statement: make good science 
observations, and return the results to where we can use 
them.  While control is central to this process, it is equally 
a problem of data management.  The data management 
challenge is to produce and store data, process it to convert 
it to more usable forms, move it across space and time and 
keep track of it in the process, and manage limited storage 
and transport resources. This paper will describe the 
Mission Data System data model and explain how it works 
with the goal-oriented MDS control architecture to enable 
precision data management. 
 The Mission Data System (MDS) defines a software 
system architecture for remotely operated embedded 
control systems. Based in control theory, it defines entities 
and relationships needed for state estimation and control.  
As the name implies, providing a robust and flexible 
framework for data management was one of the key 

objectives of the MDS.  The references list several other 
papers that describe aspects of the MDS control 
architecture in more detail [2,3,4]. 

2 Data Management 
 The purpose of a robotic observation platform is to 
use its instruments to collect data and return that data to the 
humans who run it, usually across unreliable,  intermittent, 
and latent transport media.  The data transport connection 
presents a limiting factor to the science the system can do, 
particularly in deep space missions where the distances 
involved put extreme limits on the amount of data that can 
be exchanged, and create signal latencies measured in 
hours.  Thus, it becomes critical to design a system that can 
effectively manage the process of  making the observations 
in the first place, and ensuring that the resulting 
measurements are returned intact.  The system has to be 
robust enough to get the maximum data back even in the 
face of a variety of possible failures such as a lost 
communications session, various hardware failures, or a 
system reboot. Because of these constraints, observations 
are usually planned out in great detail.   
 Even when execution proceeds nominally it is 
difficult to determine if all the data that could have been 
recovered was recovered.  This  turns out to be a tricky 
problem in traditional robotic data systems for a couple of 
reasons.  One is that telemetry systems often collect and 
transport data in unlabelled pieces mixed in with other 
data, so without intimate knowledge of workings of the 
instrument, the observation, and the telemetry system, it is 
difficult to know whether the recovered data are complete.  
Specifically, it is difficult to know what was lost. 
 Secondly, and perhaps more important, is the fact that 
typical command-oriented control systems do not retain 
any information about the intent of the observations.   This 
is because mission planners distill activity plans into 
commands, and then merge and sequence those commands 
with ones from other activities into a compact executable 
command sequence. This process removes information 
about what was really intended and where one observation 
ends and another begins. In space systems this usually 
happens on the ground.  As an analogy, consider that it is 
difficult to infer a programmer's intent from looking at the 
compiled machine code.  If everything works as planned, it 
may be possible to determine that the original plans were 



achieved.  But, when the inevitable anomaly occurs, it 
becomes very difficult to infer what part of the plan was or 
was not completed or what happened to the data. These 
were the types of problems that the Mission Data System 
was designed to solve. 

3 Mission Data System 
 The Mission Data System was designed as a 
framework for building complete end-to-end data and 
control systems – not just the embedded part.  Three top-
level design principles were brought to bear: 
• A control architecture based on explicit representation 

of controllable state [6, fig. 1].  
• An architecture for the expression of control intent 

through the use of goals [3].   
• A layered, integrated symmetrical data management and 

transport system.  
 The following section will briefly describe these 
principles, how they apply to the MDS system, and how 
they combine to enable data accountability. 

 

3.1 State Variables and State-Based Control 
 The Mission Data System's control architecture 
centers around the concept of state variables which provide 
common access to data representations of the physical 
states being controlled, including abstractions such as 
position and orientation, down to such primitive states as 
the position of a switch.  
 A state variable must be able to represent a given 
state continuously over time for any time of interest to the 
control system. Ultimately, the purpose of the control 
system is to cause this state timeline [fig. 2] to coincide 
with an intent timeline as expressed through the goals.  
That potentially means that a state variable needs to be able 
to represent a state over an infinitely long timeline from the 
distant past to the distant future. The representational 

requirements for any specific state variable depend on how 
the state is to be controlled. In practice, for the purposes of 
control, it may only be necessary for a state variable to 
provide a representation of the latest estimate of state.  
However, achieving a goal can sometimes require looking 
at estimates of state over an interval of time into the past.  
To allow planning into the future a state variable might 
have to provide information about extrapolated or 
predicted states, or state projections.  State variables can 
also provide a historical record of what actually happened 
in the past in order to provide evidence for the estimation 
of some other state.  For example, a record of thruster 
firings might be needed to compute trajectory.  This 
historical record is also useful, in the form of telemetry, for 
later analysis of what actually happened. 
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 Control intent is expressed in MDS through the use of 
goals, which are defined as constraints on particular states 
over time.  Through the use of goals, state variables can not 
only represent values that record past history, they can also 
represent intended future values as expressed in the goals.  
So, a state variable can be queried about future intended 
states: given your current set of goals, what state do you 
intend to be in at future time t?   
 The MDS control architecture requires that a given 
state variable must have exactly one estimator whose job it 
is to determine the state value as a function of the available 
evidence (other state values, measurements, and commands 
that have been issued by controllers). 
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Figure 1  MDS Control Architecture 
 The abstraction of the value function allows a given 
state variable to represent its values using different kinds of 
value representations over time.  Different value functions 
can provide different levels of quality (precision, accuracy, 
uncertainty, or viewed from a data management 
perspective, size and complexity) over different periods of 
time.  A state variable can provide high-resolution 
descriptions of state when high-precision control is needed, 
and lower-resolution representation when lower-resolution 
control is required. It can provide data when the state is 
being actively controlled, and no representation at all (i.e., 
unknown) otherwise.  
 Beside acting as a container for the state 
representation, the state variable is also responsible for 
providing transformational methods, or views, that allow 
users of that state to access it efficiently. Views make it 



possible to keep the internal state representation distinct 
from what is presented to external users.  For example, 
position along with all of its derivatives (velocity, 
acceleration) would typically be represented as a single 
complex state.  If there were users who only needed to see 
the acceleration, a view could be provided to extract that 
element of the value and return it separately, possibly 
providing a more efficient interface for that user.  A view 
could also apply a static transformation such as a units 
conversion. 

3.2 Value History 

 A value history is simply a container for the data 
representation of a state value timeline within a state 
variable or a measurement or command value timeline. 
Value histories can be specialized to efficiently represent 
just the minimal extent of a state timeline that might be 
needed for a given state. Value histories can be specialized 
for continuously-represented states (intervallic histories), 
or for sample histories represented by a series of discrete 
values (discrete histories).  Discrete value histories can be 
used in components other than state variables, such as 
hardware adapters, to record discrete samples such as 
science or engineering measurements, or commands.  
 Abstractly, the value history also provides an 
interface to deep storage and data transport. As such it can 
be viewed as a simple database mechanism. It provides a 
cache of values for immediate use, and a mechanism for 
pushing those values out to more efficient long-term 
storage.  It provides the discrete values or value functions 
(and the query mechanisms for retrieving them from 
timeline containers) to service the component's interface 
requirements, and it provides the mechanism to bundle 
segments of the timeline into products for storage and 
transport. 
 One of the main jobs of the value history is to 
maintain a balance between the amount of data being 
cached in active memory in a form most readily useful to 
the control system versus the amount of data stored as 
products in more compressed or more persistent storage.  
In many cases the control system might need only a current 
estimate of the state under control, so the value history can 
push all older values out to storage for transport, or delete 
them as needed.  But the abstraction allows for more 
complex interactions as needed.  A value history of camera 
observations could, for example, immediately copy all 
images out to persistent storage and then retrieve them 
individually for analysis.   This simple  interface allows the 
system to easily move data between different storage media 
to manage resources. 

3.3 Product-Oriented Data Management 

 Products bundle state data into manageable chunks 
that are meaningful to the application, and that are 
relatively efficient to store and transport. These bundles 
can incorporate compression and can be sized arbitrarily to 
optimize the particular transport or storage properties of the 

particular system.  Thus, a product is essentially a file with 
some associated metadata describing the data it contains.  
 Product-oriented data management is already coming 
into common use in space missions as exemplified by the 
Mars Exploration Rovers (MER), and Deep Impact 
missions.  While neither of these missions explicitly use 
any of the other MDS control architecture features, they 
both produce data products onboard, keep track of the 
content and meaning of those products through the use of 
external metadata, and employ a transport protocol to copy 
those products to the ground.  The Consultative Committee 
on Space Data Systems (CCSDS) has gone so far as to 
develop an international standard product (file) transport 
protocol (CCSDS File Delivery Protocol, or CFDP [5]), 
suggesting a certain level of maturity and industry 
convergence around this concept. 
 The principle advantage of product-oriented data 
management is that it allows developers and operators to 
produce data in a form more naturally related to the 
observations and activities being performed by the 
spacecraft.  Specifically, products tend to allow for more 
flexible content organization, eliminating most of the strict 
packaging constraints of traditional telemetry.  Secondly, 
when transport bandwidth is at more of a premium than 
local storage, products can be stored and analyzed and 
subsequently transported or deleted based on the analysis.  
MER, for example, takes high-resolution images of a new 
location, stores them, and then derives thumbnail versions 
of each for downlink.  Operators on the ground then review 
the thumbnail images and decide the disposition of the 
original images: if they look interesting they plan to send 
the full images; otherwise they delete them, or possibly 
save them to decide later.  One can envision a future 
system in which this triage is performed onboard using a 
feature-detecting algorithm.  This kind of analysis is 
impossible in systems where data is stored in the form of 
transport frames or packets because information about the 
aggregate structure and content of the data is not available 
at that level. 

3.4 Goal-Oriented Control  

 As described in [2,3], state control in MDS is 
achieved through the use of goals, which express intent in 
the form of constraints on states.  Goals that constrain the 
system to have knowledge of a given quality about a state 
of interest (so the state can be controlled) are generally 
referred to as knowledge goals.  These are distinguished 
from control goals that are used to constrain external 
physical states of the system represented by state variables. 
 The simplest kind of knowledge goal is one that 
simply requires the state to be known (i.e., other than 
unknown), which can be achieved by enabling an estimator 
to determine a current value of the state.  This sort of 
control makes it possible to disable the production of state 
estimates when they aren't needed, possibly saving power, 
memory and processor resources. 



 An example of a knowledge goal would be a 
constraint to have an estimate of a given temperature with a 
standard deviation of less than 1 deg C within a given time 
period, or to have knowledge of a switch position with 
95% certainty in a given time period. 
 The distinction between knowledge goals and control 
goals is made mostly for descriptive purposes because in 
practice they're usually expressed as part of the same goal. 
That is, for many control goals where the knowledge 
quality can vary it doesn't make sense to express a control 
goal without explicitly qualifying a knowledge requirement 
as part of the goal.  So, a goal to point the camera at a 
target with an accuracy of 0.1 degrees only makes sense if 
you ensure that you actually know the pointing state well 
enough to control it to that degree of accuracy. Knowledge 
goals are primarily used to control the estimators that 
produce state information. 

3.5 Goal-Oriented Data Control 

 Details describing how much data has actually been 
created, and where and how it is stored are called the data 
state.  Because these details are inherently part of the 
control system rather than the system under control, they 
represent a special case of states that need to be controlled.  
thus, data states are represented by specialized state 
variables that cannot have any history or meta state of their 
own, but they can be controlled using specialized data 
goals. 
 The concept of data state can include information 
about how and where the data are stored, what downstream 
processing such as compression has been performed.  It can 
include metadata labels describing transport intent (where 
it needs to go, how important it is to get it there), and 
transport status (whether, or how completely transport has 
been accomplished). So, a data goal might constrain a 
value history to produce telemetry, or to store certain 
values persistently. Data goals might also constrain the 
amount of memory available to a given value history. 
 Not all state variables have or require any data state.  
In many cases it is possible to design a control loop where 
the state representation and the quality of this 
representation are static.  For very simple control systems 
this might not even compromise efficiency.  For example, a 
thermostat may only really need to know a reasonably 
current value of the temperature in order to control it in a 
realtime control loop.  Thus, the implementation of this 
state variable might reasonably optimize away its ability to 
answer questions about values in the past or future, or to 
represent values with different precisions.  If the state is 
simple enough and no telemetry is needed, then no data 
state is needed. 
 Management of the amount of state data that is 
collected for transport is done using data goals, or 
constraints on the data states of value histories.  Data goals 
specifically constrain attributes of the data state that are 
affected after the data is produced, such as how long the 

information is retained in memory, or how much of it 
should be packaged for transport.   
 Data goals can be used to constrain the amount of 
history that is remembered for a given state, measurement, 
or command, or the quality of the data persistence (e.g., 
how recoverable is that state value after a processor reset).  
They can constrain activities that package the values for 
transport, and processes that would compress the data to 
maintain a given quantity of history within a given storage 
constraint. Data goals can indirectly influence data 
transport, but because of the complexity of the transport 
process they have to do so in a particular way, as discussed 
in the following section. 

3.6 Data Transport 

 Data transport is in general an unreliable process 
because bits sent across any medium can be lost or 
corrupted in transit.  This is particularly true of space links 
where extremely long distances are involved.  The goal of 
data transport is primarily to have the data (all the data, and 
exactly the data) at the receiving end of the link.  This 
requires coordinated actions on both ends of the link.  
Ideally, an automatic reliable transport protocol would be 
used to send the data between deployments. But the long 
latencies and bandwidth limits of space communications 
often make this impractical. A goal-based system would 
use a similar protocol except that the decision to request 
retransmission of missing pieces would be under the 
control of another goal.  Thus, the system could reason 
about the relative priority of completing one goal versus 
proceeding on to something else (and on the ground it 
would possibly give human operators a chance to adjust the 
priorities).  So, the goal to have data on the ground would 
elaborate into some goals on the ground system (to wait for 
the data), and some goals on the spacecraft to try to send 
the data.  The only control actions available on the 
spacecraft are to try to send the data and then wait for some 
external acknowledgment that it was received, or that the 
goal failed, Once the transport goal is completed 
(positively or negatively), the system is free to recover the 
storage space by deleting the local copy of the data. 

3.7 Data Management 

 Data goals provide a mechanism to achieve two key 
requirements that enable data accountability: they can 
provide information to associate the transportable data to 
the observation requests, and they associate requests with 
models that can be used to predict how much data to expect 
when a given goal is accomplished.  For example, a goal to 
take a picture implies a subgoal to store the image data 
whose size can be inferred from the characteristics of the  
camera or the picture-taking goal. Every goal created in the 
planning process and uplinked to the spacecraft has a 
unique identifier.  Data products created as the result of a 
goal execution can be explicitly and persistently labelled as 
being that goal's products, allowing the ground system to 
unambiguously associate them with the original 
observation request.  Goals can directly or indirectly cause 



data to be produced.  This information by itself allows the 
products to be identified and reconstructed on the receiving 
side.  
 In the case of science observations where the point of 
the observation is to return data, the goal can explicitly 
specify the products to be returned.  Goals such as this 
make the planning process much simpler because they 
elevate data production and associated resource usage from 
a side-effect to a first-class intent. If the original goals are 
met, the expectations expressed in the goal can be matched 
up with the received data to determine overall success. 
 Indirect data production can result from goals 
whose main purpose is to effect some physical control on 
the system, or perform some high-level operation.  The 
MDS goal-oriented planning process allows high-level 
goals to be elaborated into supporting lower-level goals.  
The hierarchy of parent-child associations is explicitly 
tracked to enable traceability of intent.  Thus, if telemetry 
visibility is required for a control maneuver, the top-level 
goal for that maneuver might elaborate a subgoal to 
produce the required engineering data products.  
Background or default goals could also be used to produce 
telemetry products as a default case when no other explicit 
goals are in effect. 
 When the top-level intent is expressed as a data 
goal, resource management also becomes simpler because 
the amount of storage and transport bandwidth that will be 
needed is a direct function of the size of the product, which 
is explicit in the goal. Similarly, the goals can express 
relative priorities which can apply transactionally to entire 
goals.  So, when a resource conflict arises the information 
is available to completely stop achieving one goal or the 
other, rather than partially failing both. 

4 Conclusions 
 Preserving intent in the control system through the 
use of goals helps to make the control system more robust 
and it can provide a way to unambiguously account for the 
data. The approach is more robust because it provides 
explicit information to guide the system's ability to reason 
about the relative priorities data producing activities that 
use resources like storage or bandwidth, and it provides an 
explicit way to associate all of these sub-activities with the 
parent goal of getting the observations to the users. 
 These additional capabilities come with some cost, of 
course.  The metadata required to associate data with goals  
adds overhead against already extremely limited storage 
and transport resources in an embedded system.  But these 
capabilities provide ways to automate expensive human-
intensive processes that currently are among the largest and 
most critical parts of operating a robotic space mission. For 
a given system a balance must be reached between the cost 
to develop the goals and the additional frameworks needed 
to manage data against the cost savings and potential for 
more science that can be achieved with the same class of 
platform. For missions that depend on reliable and 
verifiable data, it seems like a good investment. 
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